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The problem of melting of a cylindrical rod moving at constant velocity through 
a heat source is solved by mesh methods. 

Many heat and mass transfer problems are associated with the need to study thermal pro- 
cesses with a phase transition taken into account. In this respect, we note problems of the 
crystallization and melting of solid substances, for instance, In their nature, the mathe- 
matical models of thermal processes with a transition from one phase state to another are 
nonlinear and multidimensional. It is impossible to investigate them successfully without 
using calculation methods [I]. Many papers are devoted to the numerical solution of problems 
with a phase transition. In particular, the method with smoothing of the coefficients is 
used most extensively for multidimensional nonstationary $tefan problems [2, 3]. Another 
approach (methods with an explicit extraction of the phase transition boundary) is applied 
mainly in one-dimensional problems [4]. 

The quasistationary Stefan problem in which the phase interface is fixed or moves at a 
constant rate can be extracted out of the total spectrum of problams with a change in the 
phase state. Certain mathematical questions about the existence and uniqueness of solutions 
of this problem are investigated in thesimplest formulation in [5]. 

Results of a numerical solution of the quasistationary axisymmetric Stefan problem, which 
can be considered a model for describing thermal processes in the continuous teeming of steel 
and the zone melting of crystals [6], are presented in this paper. A method, developed by 
the authors of this paper and based on application of potential theory, is used. The same 
model problem was examined in [7], where a build-up method with smoothing of the coefficients 
was used. Results are presented of computations with different dimensionless parameters 
characterizing the problem. 

FORMULATION OF THE PROBLEM 

A cylindrical rod of radius R moves past a heat source at the constant velocity vo. The 
thermal process with a phase transition from one state of the substance to another is de- 
scribed in the variables (r, z) by the following equation for the temperature: 

1 0 (rk(u) Ou ) 0 (k Ou ) Ou (I) 
a~ T + T (") Tz =c(")~ Oz 

The Stefan condition 

(k(u) O'-~)l--(k(u) Ou ] =--kvacos(n, z) \ On ,2 (2) 

is satisfied on the phase interface S(u = u*). The heat-conduction coefficient and specific 
heat in (I) and (2) are assumed discontinuous in the general case: 

k (u) = {k~ (u), u < u*, c (u) = t c' (u), u < u*, 
k, (u), u ~> u*, It, (u), u ~> .*. 

For definiteness, n is the external normal to S with respect to the domain D, (u < u*, solid 
phase), while u > u* in Da (liquid phase), and cos(n, z) is the cosine of the angle between 
the normal n and the axis OZ. 

The influence of the heat source is felt on a certain section of the rod 0 5 z ~ L. 
Let us extract a rectangle of length L and width R and let us examine the problem in this 
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domain.  
t he  s i d e s  o f  t he  r e c t a n g l e  D---{(r, z)lO<r<R, 0<z<L} : 

u (r, 0) = u (r, L) = u,. 
The h e a t  f l u x  

k (u) ~ r  u (R, z) = q (z) 

is given on the upper boundary for r = R, while the condition 

We consider the temperature constant and equal to the environment temperature uo on 

(3) 

(4) 

rk(u)--~-r (r, z)--~O, r-+O (5) 

is satisfied for r = 0. Using the same notation for the dimensionless variables as for the 
dimensional quantities, we obtain the following problem from (I)-(5): 

r 

k ( U ) ~ n )  i - - ( k ( u )  0~-nu )2 = - -Pe St cos (n, z), , u =  1, (7) 

u(r, O) = u(r, L) = uo, (8) 

k(U)~r (1, z) = Krq(z) ,  (9)  

r k ( u ) - ~ -  r (r, z)-+0,  r -+0 .  (10) 

The problem (6)-(I0) is characterized by the dimensionless parameters Pe, St, and Kr. 

METHOD OF SOLUTION 

We use the method of additive extraction of the jump in the normal derivatives 
the unknown phase interface S governing the specifics of the Stefan problem. 
mulate the problem for a new auxiliary function 

U 

v (u) = I k (~) ~ .  

Equation (6) and conditions (7)-(10) yield the following problem for v: 

1 # 00 a~v #v 
- - r  - ~ - - -  = Pex(u) , 

�9 dr dr dz 2 dz 

, k On !~ 
= - -Pc  St cos (n, z~., v = v*, 

o (r,  0) = o (r,  L)  = ~lo, 

Ov 
�9 (1, z ) = K r q ( z ) ,  

Or 

00 
r (r, z ) ~ O ,  r ~ O .  

ar 

(7) on 
We first for- 

(11) 

(12) 

(13) 
( i4) 

(15) 

l~ere 
I UQ 

,~ (o) = c ( .  (v))/k ( .  (v)), o* = J" k (~) e~, no = !" k (D a~. 
0 

We seek the solution of the problem (11)-(15) for v in the form of the sum of two func- 
tions 

v (r, z) = V (r, z) + ~ (r, z), (16 )  
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where m(r, z) is a continuous function together with its first derivatives in the whole domain 
D while V(r, z) is the potential of a simple layer, 

V(r, z ) = S  v(r', z')G(r, z; r', z')dl. (17) 
s 

Here G(r, z; r', z') is the fundamental solution of the Laplace equation in the axisymmetric 
case, which is described as follows: 

In (18) 

O (r, z; r ' ,  z ' ) = - ~ - t  r 

4/',*" ~ tz  : =  

(r + r')~ + (z  - -  z ' )  z ' 

K (t) 
J0 V l - t  ~s in  z 

h'(t).  (18)  

is the complete elliptical integral of the first kind. We note tha t  ~he normal derivative of 
the simple-layer potential (17), (18) undergoes a discontinuity on $ whose magnitBde is deter- 
mined by the value of the density at the point of discontinuity [8]; 

Setting 

/ OV ~ ' OV = v(r,  zL 

v(r, z )=- -PeStcos(n ,  z), (19) 

we s a t i s f y  the conjugate  c o n d i t i o n  (12) fo r  the  f u n c t i o n  v ( r ,  z) by us ing  (16) and (17).  The 
func t i on  m(r ,  z) has no s i n g u l a r i t i e s  in D fo r  such an e x t r a c t i o n  of  the jump in  the normal 
d e r i v a t i v e  (12),  and is  a s o l u t i o n  of  the equa t ion  

~ . . . .  ! . . . . . . . . . . .  Pe x (o~ -!- V) 0 ~r -~. V~ , ( 2 0 )  
r Or ~)., dzz dz 

where the  p o t e n t i a l  V(r ,  z) i s  de termined by ( t 7 ) - ( 1 9 ) ,  Boundary cond i t i ons  fo r  ~ ( r ,  z) r e -  
s u l t  from (13) - (16) :  

o(r, 0)=~: l]~,--V(r, 0), o(r,  L ) =  ~lo--V(r, L), (21) 

3~o OV 
0---7-(i, z):= Krq(z) - -  ~ (I, z), (22) 

Om 
r-v- - (r ,  z)-+O, r-.:,-O. 

(23) o r  

NUMERICAL REALIZATION OF THE METHOD 

We use an iteration process of successive refinement of the unknown phase interface, 
performed in several stages, to solve the problem (16)-(23) numerically. 

I) Let there be the k-th approximation for the function v(r, z) in the domain D, where 

~(r, z) is given sufficiently arbitrarily. We denote the appropriate approximation for the 
k h k 

phase interface by S, where S={(r, z)Iv(r, z) =u:"}. Then in conformity with (17) we have 

Y(r, z) = [ 4, (r', z') O(r, z; r ' ,  z') dr, 

$ 

and the  d e n s i t y  ~ ( r ,  z) is  de te rmined  accord ing  to (19). 

2) The next  (k + l ) - t h  approximat ion fo r  the a u x i l i a r y  f u n c t i o n  ~0(r, z) is  de termined 
from the s o l u t i o n  of  the l i n e a r  problem 

h~-I h-!-J h.!-| k 
i z 6 o  a z o  h a ( o : - l . , ' ~  

r - -  -I- - -pex(o)  - -  - - ,  (24) 
I Or ar az z az 
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Fig. I. Fig. 2. 

/I 

Fig. I. Melt boundary for different values of the Kirpichev num- 
ber (St = 0.25; Pe = 0.5): !) Kr = 0.75; 2) 0.9; 3) 1.0; 4) 1.25; 
5) 1.5. 

Fig. 2. Influence of the Peclet number on the melt boundary (St = 
0.25, Kr = 1.0): I) Pe = 0; 2) 0.25; 3) 0.5; 4) 1.0. 

h-z- ~ k 
e> (r, 0",---= q , , - -V  (r, 0), 

h~; h 

O.o~ . (l, z) = Kr Q ( z ) - -  0I/_.._~_" 
Or dz 

k- - ]  

0 ~o... (r, z ) ~ O ,  r ~ O ,  
r Or 

k--I h 
~,~ 0", L) 11i,-- V(r ,  " (25) 

(I, z), (26) 

(27) 

which is obtained from the nonlinear problem (20)-(23). 

k-~1 k+l k 
3) Let us set v (r, z) = ~ (r, z) ~ V(r, z)and let us find the (k + l)-th approximation for 

S by means of this approximation, etc. 

The iteration process is performed until the necessary accuracy E is reached in deter- 
mining the function v(r, z), i.e., until satisfaction of the condition 

k + l  k k 

I v (r, z ) - .  v(r, ~ l < s l v ( r ,  ~ l ,  (r, ~ E  O. 

P r o b l e m  ( 2 4 ) - ( 2 7 )  was s o l v e d  n u m e r i c a l l y  by u s i n g  f i n i t e - d i f f e r e n c e  me thods .  An i n t e r n a l  
i t e r a t i o n  p r o c e s s  was u sed  w i t h  i n v e r s i o n  o f  t he  L a p l a c e  d i f f e r e n c e  o p e r a t o r  by u s i n g  a d i r e c t  
method [9] on the  b a s i s  o f  a f a s t  F o u r i e r  t r a n s f o r m .  C o m p u t a t i o n  o f  t he  a p p r o x i m a t e  l o c a t i o n  
o f  t h e p h a s e  i n t e r f a c e  S was p e r f o r m e d  by  u s i n g  l i n e a r  i n t e r p o l a t i o n  in  the  v a l u e s  o f  v a t  
the  mesh n o d e s .  The p r o c e d u r e  o f  c a l c u l a t i n g  the  t e m p e r a t u r e  u by means o f  t he  v a l u e s  o f  t he  
a u x i l i a r y  f u n c t i o n  v i n  the  c a s e  when k ( u )  i s  a p i e c e w i s e - c o n s t a n t  f u n c t i o n  w i t h  a d i s c o n -  
t i n u i t y  a t  u = u* r a i s e s  no d i f f i c u l t i e s .  I n  the  more g e n e r a l  case  the  c o m p u t a t i o n  o f  u i s  
p e r f o r m e d  a t  e a c h  k - t h  i t e r a t i o n  by u s i n g  i n t e r p o l a t i o n  i n  a s u f f i c i e n t l y  d e t a i l e d  t a b l e  o f  
v a l u e s  of  v ( u i ) ,  i = 1, 2 . . . . .  M under  the  a s s u m p t i o n  t h a t  t he  f u n c t i o n  k ( u )  i s  l i n e a r  i n  
each  segment  [ u i ,  u i + z ] -  

RESULTS OF THE COMPUTATIONS 

The following heat conduction and specific heat coefficients are used in the examples 
presented below : 

k (u) = l 0.6u + 0.4, 
t ] ,  u~> ], 

Here Uo = 0 .15 i n  the boundary  c o n d i t i o n s  
the form 

I 

I0.15u q- 0,63, u< I, 
u<l, c(u)=[l, u~l. 

(8), (9); heat source intensity is selected in 

to 

where zo = 0.5L and ro ffi 0.25. 
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Fig. 3. Fig. 4. 

Fig. 3. Dependence of the melt boundary on the Stefan num- 
ber (Pe = 0.5; Kr = 1.0): I) St = O; 2) 0,125; 3) 0.25; 4) 
0.5. 

Fig. 4. Melt boundary with heat transfer to the environment 
taken into account (St = 0.25; Pe = 0.5, Kr ~ |,0); I) Bi = 
O; 2) 0.25; 3) 0.5. 

The computations were performed on a (33 x 33) mesh in the rectangle D with L = 3. The 
selection of such an L is due to the necessity that the influence of the side boundaries 
does not affect the melting isotherm. The numerical experi~nts performed displayed rapid 
convergence of the proposed iteration process and good accuracy of the developed method in 
the test problems. 

The solution of problems with a varying Kirpichev number is presented in Fig. I. Let 
us note that the thermal source intensity at Kr = 0.5 does not suffice to melt the rod. The 
influence of the Peclet number is shown in Fig. 2. As should have been expected, as Pe in- 
creases, corresponding to an increase in the velocity of rod motion, the domain of the melt 
diminishes and shifts in the direction of rod motion. An analogous pattern of thermal front 
behavior is observed for a change in the Stefan number (Fig. 3). 

The melting isotherms are displayed in Fig. 4 for problems with the parameters Pe = 0.5, 
St = 0.25, and Kr = I, in which, in addition, the heat transfer to the external medium is 
taken into account. This corresponds to the fact that the condition k(u)(~u/~r)(l, z) = 
KrQ(z) -- Bi u(u)(u -- Uo) is satisfied instead of (9) in the problem (6)-(10). In our example 

/u - -0 ,125 ,  u <  1, 
~(u) = [1, u > / 1 ,  

and the Blot number changes. Taking account of the heat losses associated with radiation is 
performed analogous ly. 

NOTATION 

(r, @, z), cylindrical coordinates; R, radius of the cylindrical rod; vo, velocity of 
rod motion; u*, melting point; uo, temperature of the environment; Q(z), heat flux on the rod 
side boundary; k, enthalpy of the phase transition; k(u), heat conduction; c(u), specific 
heat; a(u), coefficient of heat transfer to the environment; Pe = voRco/ko, Peclet number; 
St = k/CoU*, Stefan number; Kr = QoR/kou*, Kirpichev number, and Bi = aoR/ko, Biot number. 
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